Structure Reports

Online
ISSN 1600-5368

James W. Karban,* Jennifer L. Morgan, Johnna M. Dees and Kevin K. Klausmeyer

Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA

Correspondence e-mail:
james_karban@baylor.edu

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.047$
$w R$ factor $=0.137$
Data-to-parameter ratio $=16.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-(4-tert-Butylbenzyl)-3-phenylinden-1-one

The title compound, $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}$, was obtained from the reaction of 2-[(4-tert-butyl)phenylmethyl]-1,3-diphenylpropane-1,3dione with acetic anhydride. The reaction yielded 92% of the product. The crystal structure confirms the formation of the five-membered ring from the parent dione.

Comment

The title compound, (I), was synthesized in order to explore the stability of various indenone ozonides; 2-methyl-3-phenylinden-1-one has been shown to form stable ozonides (Karban et al., 1978). It was also synthesized in order to assess the effect of a tert-butyl group on the stability of an ozonide derived from a substituted 2-methyl-3-phenylinden-1-one. Other substituents, such as methyl, bromo, and nitro, were also tested. The preparation of the indenones followed methods described by Guidrinience et al. (1963) in which 2-[(4-tert-butyl)phenylmethyl]-1,3-diphenylpropane-1,3-dione undergoes dehydration with ring closure to form the indenone. Compound (I), the tert-butyl derivative, gave a 92% yield and produced an ozonide that was stable for several days.

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters are presented in Table 1. The crystal structure reveals an indenone nucleus with a phenyl substituent in the 3 -position and a 4-tert-butylbenzyl substituent in the 2-position. The $\mathrm{O} 1-\mathrm{C} 1$ bond has a length which represents a double bond. For the five-membered ring of the indenone, the bond assignment is confirmed in that $\mathrm{C} 2-\mathrm{C} 3$ is an acceptable double bond and the other non-aromatic bonds are of appropriate lengths for single bonds. The 3-phenyl ring $(\mathrm{C} 10-\mathrm{C} 15)$ is tilted $54.94(5)^{\circ}$ from the indenone plane.

Experimental

Benzyl-1,3-diphenylpropane-1,3-dione (10.8 mmol) was dissolved in dry 1,2-dichloroethane (65 ml). A mixture of concentrated sulfuric acid $(10 \mathrm{ml})$ and acetic anhydride (50 ml), both ice cold, was added slowly. The mixture was stirred for 24 h at room temperature. Ice-cold water (250 ml) was added and stirring continued, allowing the
mixture to be extracted with diethyl ether. The organic layer of ether/ dichloroethane was dried with anhydrous magnesium sulfate and the solvent was then evaporated, leaving a crystalline product. The product formed yellow rhombic crystals with a melting point of 422423 K . The ${ }^{1} \mathrm{H}$ NMR spectrum showed peaks at $\delta 1.27(s, 9 \mathrm{H}), \delta 3.65$ $(s, 2 H)$ and $\delta 7.35(m, 13 H)$. The IR spectrum showed a peak at $1705 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O} \\
& M_{r}=352.45 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=10.0255(3) \AA \\
& b=10.1273(4) \AA \\
& c=19.4485(6) \AA \\
& \beta=91.931(2)^{\circ} \\
& V=1973.51(12) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
D_{x}=1.186 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 5432 reflections
$\theta=2.3-23.9^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, yellow $0.17 \times 0.09 \times 0.08 \mathrm{~mm}$

Data collection

Bruker X8 APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.988, T_{\text {max }}=0.994$
22372 measured reflections
4039 independent reflections 2905 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-12 \rightarrow 12$
$k=-12 \rightarrow 12$
$l=-23 \rightarrow 24$

Refinement

Refinement on F^{2}

$$
\left.\begin{array}{rl}
w= & 1 /[
\end{array} \sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0687 P)^{2}\right)
$$

$R R\left(F^{2}\right)=0.137$
$S=1.05$
4039 reflections
247 parameters
H -atom parameters constrained

Table 1
Selected bond lengths (\AA).

$\mathrm{O} 1-\mathrm{C} 1$	$1.219(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.351(2)$
$\mathrm{C} 1-\mathrm{C} 9$	$1.491(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.497(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.494(2)$		

H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.93 \AA$) and H -atom isotropic displacement parameters were fixed and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 50\% probability level

Data collection: APEX2 (Bruker, 2003); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

The Bruker X8 APEX diffractometer was purchased with funds received from the National Science Foundation Major Research Instrumentation Program Grant CHE-0321214. KK thanks the Robert A. Welch Foundation for support (AA1508).

References

Bruker (2003). APEX2 (Version 1.0-5) and SAINT-Plus (Version 6.25). Bruker AXS Inc., Madison, Wisconsin, USA.
Gudriniece, E., Vangas, G. \& Ziemelis, K. (1963). Latv. PSR Zinat. Akad. Vestis Kim. Ser. pp. 71-73.
Karban, J., McAtee, J. L., Belew, J. S. \& Mullica, D. F. (1978). J. Chem. Soc. Chem. Commun. pp. 729-730.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

[^0]: (C) 2004 International Union of Crystallography

 Printed in Great Britain - all rights reserved

